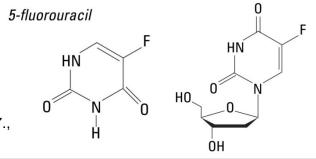


Separation of 5-fluorouracil and its derivatives using a stable bonded phase HILIC column


Atis Chakrabarti

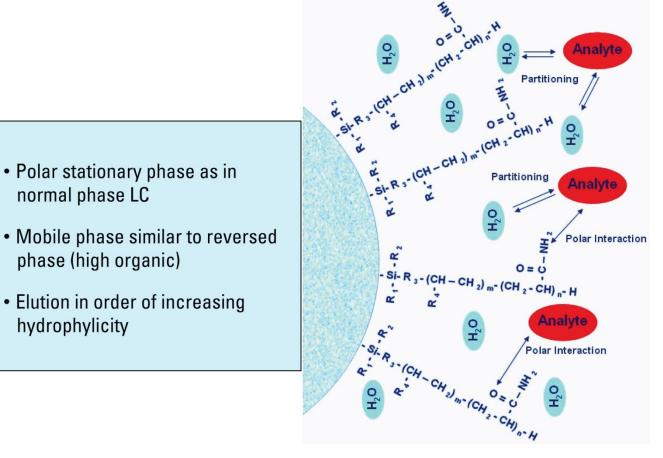
Tosoh Bioscience LLC, King of Prussia, PA 19406

1

- The pyrimidine analog 5-fluorouracil (5-FU) is an anticancer ("antineoplastic" or "cytotoxic") drug.
- The chemotherapy agent 5-FU has been in use for the treatment of cancer for about 40 years.
- This compound acts in several ways, but principally as a thymidylate synthase inhibitor¹.
- 5-fluoro-2'-deoxyuridine, another polar compound in the metabolic pathway of 5-FU, also inhibits DNA synthesis by prior inhibition of thymidylate synthetase.

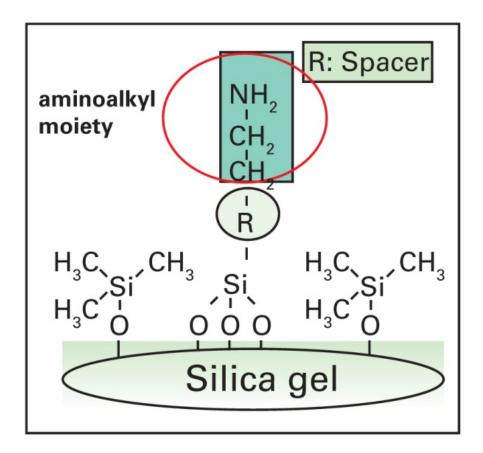
¹ Dawson, R. M. C., et al., Data for Biochemical Research, 3rd ed., p. 267., Oxford University, Press, New York, (1986).

- 5-FU is highly polar and elutes in the void volume when separated by reversed phase chromatography (RPC), even in 100% aqueous mobile phase.
- Thus RPC, the most widely used mode of retention in HPLC, cannot be used for the analysis of 5-FU.
- Ion Pair reagents cannot be employed due to the non-ionizable nature of this compound.
- By using an amide or amino bonded phase column, polar compounds can be retained by hydrophilic interaction chromatography (HILIC).
- The HILIC mode of separation offers ~10-fold increase in the sensitivity of detection when used in conjunction with electrospray-ionization mass spectrometry (ESIMS).



- This study demonstrates that a TSKgel NH₂-100 HILIC column effectively retains 5-FU and allows for its separation from several derivatives.
- The developed method was validated by a system suitability test.
- Limit of detection and limit of quantitation of the method were also determined.
- A column lifetime study using 5-FU yielded about 1000 injections without any significant change in the capacity factor of the column.

To show the usefulness of the silica-based TSKgel NH_2 -100 column for the analysis of 5-fluorouracil using a conventional HPLC system.



Mechanism of Hydrophilic Interaction Liquid Chromatography (HILIC)

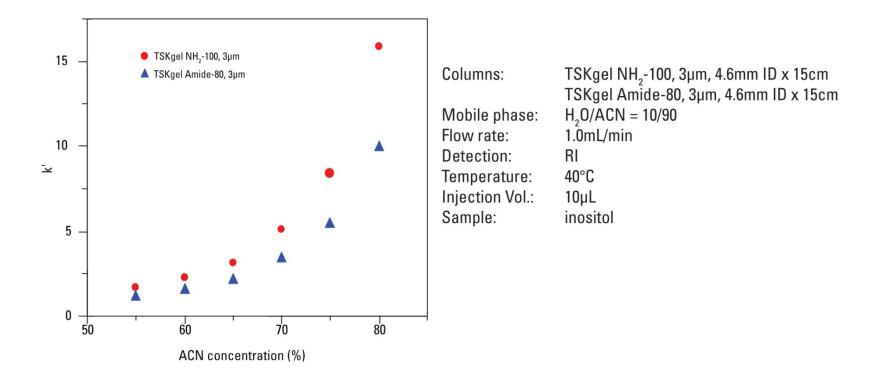
Schematic diagram of stationary phase of TSKgel NH₂-100, 3µm columns

Properties of TSKgel NH₂-100, 3µm columns

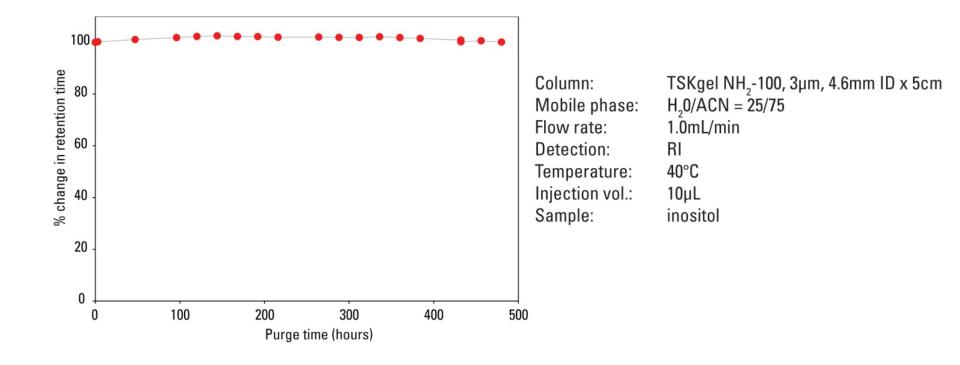
Base material	Silica		
Particle size (nominal)	3µm		
Pore size (nominal)	10nm		
Specific surface area (nominal)	450m²/g		
Ligand *	Alkylamino		
End-capping reagent	Trimethylsilyl groups		

* Alkyl spacer also incorporates 2nd and 3rd amino groups

Column size	Theoretical plates	A _s
4.6mm ID x 5cm	>= 6,000	0.90 - 1.30
4.6mm ID x 15cm	>= 18,000	0.90 - 1.30



- TSKgel NH₂-100 columns are packed with spherical 3µm silica particles containing 100Å pores.
- The internal and external surfaces of the particles are derivatized with a proprietary alkylamino silane reagent, while remaining and accessible silanol groups are endcapped with trimethylsilane.
- This novel bonding strategy provides expanded selectivity and a better safeguard against hydrolysis of the underlying silica.


- The chemical stability of the bonded phase was greatly enhanced by first using an endcapping reaction followed by the actual amino-ligand attachment.
- These columns can be used with evaporative light scattering (ELS) and mass spec (MS) detectors.
- The 3µm material is ideal for use in LC/MS applications for the analysis of active pharmaceutical ingredients and their metabolites.

Amino-based TSKgel NH₂-100 columns expand retention & selectivity in HILIC while offering higher chemical stability, a pre-requisite for reproducible results.

After flushing a TSKgel NH_2 -100 column with 18L mobile phase (500 hours), retention of inositol barely changed.

Materials and Methods

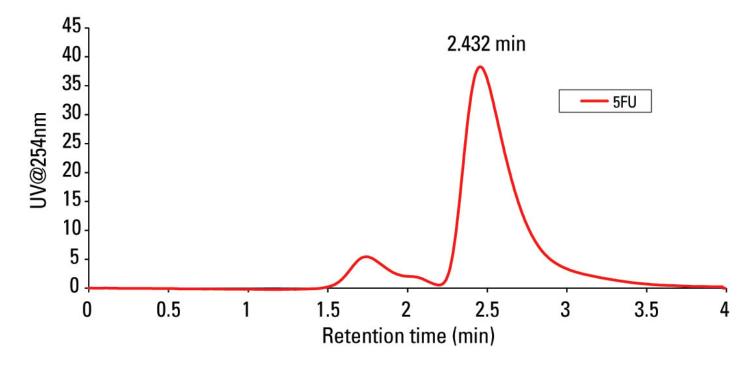
All analyses were carried out using an Agilent 1200 HPLC system run by Chemstation (ver B.04.01) unless mentioned otherwise.

Optimal chromatographic conditions :

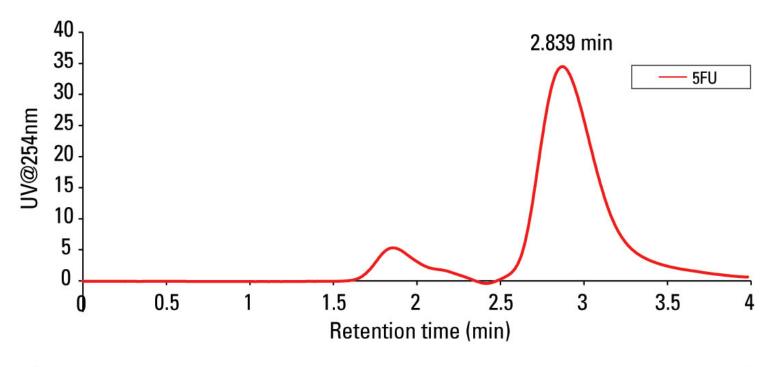
Columns: TSKgel NH₂-100, 3µm, 2.0mm ID x 5cm Competitor P – 2.5µm, 2.1mm ID x 5cm Competitor Z – 3.5µm, 2.1mm ID x 5cm

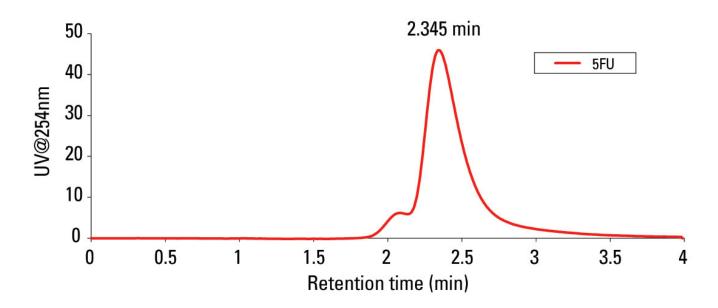
Mobile phase: 80% acetonitrile and 20% 5mmol/L ammonium acetate (Isocratic) in water

- Flow rate: 0.1mL/min
- Detection: UV@254nm

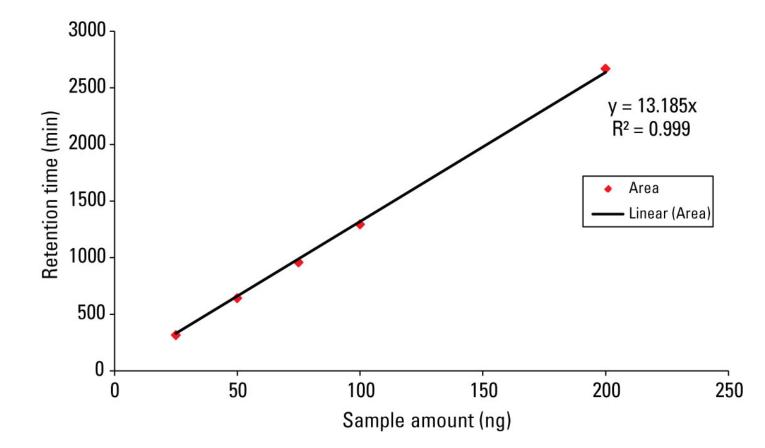

Temperature: ambient

Injection vol.: 10µL

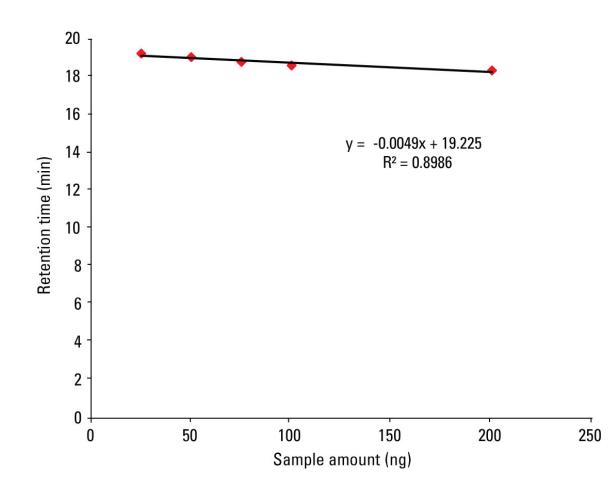

- Ammonium acetate (Fisher A637-500)
- 5-fluorouracil (Sigma)
- 5-fluoro-2'-deoxyuridine (Sigma F0503-250MG, Lot# 029K1232)
- High purity HPLC grade solvents were used for the preparation of stock standards, samples, and mobile phases.


	RT (min)	k	Area	S	Plates
%RSD (5 consecutive injections)	1.3	1.9	3.9	4.3	1

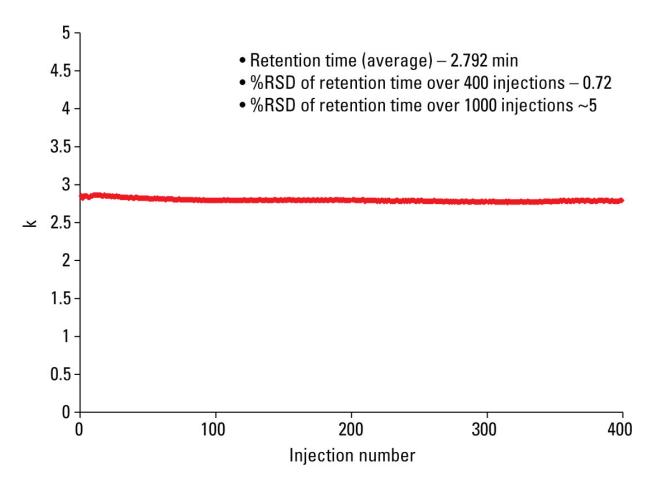
	RT (min)	k	Area	S	Plates
%RSD (5 consecutive injections)	1.6	2.4	1.12	2.26	5



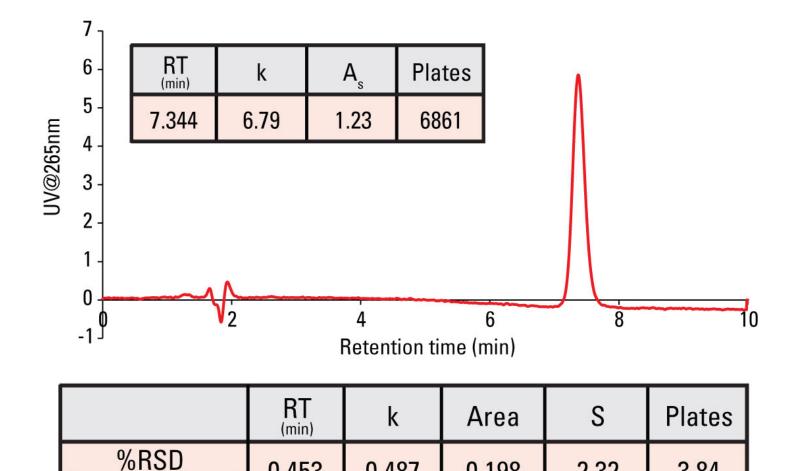
Separation of 5-fluorouracil using other competitive HILIC column (chromatograms not shown here).


	RT (min)
Competitor Z	2.319

The analysis was linear within the experimental range.



Shift in retention time was <5% within the experimental range of loading.



Reproducibility

The TSKgel NH_2 -100 column is very stable. The novel bonding strategy provided a better safeguard against hydrolysis of the underlying silica. The chemical stability of the bonded phase was greatly enhanced by first using an endcapping reaction followed by the actual amino-ligand attachment.

0.487

0.453

TOSOH BIOSCIENCE LLC

(5 consecutive injections)

2.32

3.84

0.198

	RT (min)	k	Area (mAU*S)	S	Plates
1	7.371	6.82	80.35	0.85	7245
2	7.334	6.78	80.66	0.83	7005
3	7.344	6.79	80.30	0.81	6861
Average	7.335	6.78	80.45	0.83	6930
Stdev	0.033	0.03	0.16	0.02	266
%RSD	0.447	0.49	0.20	2.32	3.84

%RSD values of the peak parameters over 3 consecutive injections show high reproducibility in the analysis.

Separation of 5-fluoro-2'-deoxyuridine using TSKgel NH₂-100 column

Flow rate	RT (min)	k A _s		Plates
0.3	2.457	1.61	1.37	2317
0.2	3.667	1.59	1.43	2134
0.1	7.344	6.79	1.23	6861

The flow rate of 0.1mL/min yielded the best efficiency under the chromatographic conditions of the analysis.

- TSKgel NH₂-100 columns packed with spherical 3µm silica particles containing 100Å pores can be used for the separation of polar molecules such as 5-fluorouracil (Sigma) and 5-fluoro-2'-deoxyuridine with good resolution and consistency.
- The column yielded better separation compared to the competitive columns.